Surface group representations with maximal Toledo invariant Sur les représentations d’un groupe de surface compacte avec invariant de Toledo maximal
نویسندگان
چکیده
We study representations of compact surface groups on Hermitian symmetric spaces and characterize those with maximal Toledo invariant. To cite this article: M. Burger et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003). 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Résumé Nous étudions les représentations d’un groupe de surface compacte sur un espace symétrique hermitien et caractérisons celles avec invariant de Toledo maximal. Pour citer cet article : M. Burger et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003). 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
منابع مشابه
Surface Group Representations with Maximal Toledo Invariant
We develop the theory of maximal representations of the fundamental group π1(Σ) of a compact connected oriented surface Σ with boundary ∂Σ, into the isometry group of a Hermitian symmetric space X or, more generally, a group of Hermitian type G. For any homomorphism ρ : π1(Σ) → G, we define the Toledo invariant T(Σ, ρ), a numerical invariant which is in general not a characteristic number, but ...
متن کاملDEFORMATIONS OF MAXIMAL REPRESENTATIONS IN Sp(4,R)
A good way to understand an object of study is, as Richard Feynman famously remarked, to “just look at the thing!”. In this paper we apply Feynman’s method to answer the following question: given a surface group representation in Sp(4,R), under what conditions can it be deformed to a representation which factors through a proper reductive subgroup of Sp(4,R)? A surface group representation in a...
متن کاملHiggs Bundles and Surface Group Representations in the Real Symplectic Group
In this paper we study the moduli space of representations of a surface group (i.e., the fundamental group of a closed oriented surface) in the real symplectic group Sp(2n,R). The moduli space is partitioned by an integer invariant, called the Toledo invariant. This invariant is bounded by a Milnor–Wood type inequality. Our main result is a count of the number of connected components of the mod...
متن کاملThe Action of the Mapping Class Group on Maximal Representations
Let Γg be the fundamental group of a closed oriented Riemann surface Σg, g ≥ 2, and let G be a simple Lie group of Hermitian type. The Toledo invariant defines the subset of maximal representations Repmax(Γg , G) in the representation variety Rep(Γg , G). Repmax(Γg, G) is a union of connected components with similar properties as Teichmüller space T (Σg) = Repmax(Γg , PSL(2, R)). We prove that ...
متن کاملGraph Eigenfunctions and Quantum Unique Ergodicity
We apply the techniques of [BL10] to study joint eigenfunctions of the Laplacian and one Hecke operator on compact congruence surfaces, and joint eigenfunctions of the two partial Laplacians on compact quotients of H × H. In both cases, we show that quantum limit measures of such sequences of eigenfunctions carry positive entropy on almost every ergodic component. Together with the work of [Lin...
متن کامل