Surface group representations with maximal Toledo invariant Sur les représentations d’un groupe de surface compacte avec invariant de Toledo maximal

نویسندگان

  • Marc Burger
  • Alessandra Iozzi
  • Anna Wienhard
  • Étienne Ghys
چکیده

We study representations of compact surface groups on Hermitian symmetric spaces and characterize those with maximal Toledo invariant. To cite this article: M. Burger et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).  2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Résumé Nous étudions les représentations d’un groupe de surface compacte sur un espace symétrique hermitien et caractérisons celles avec invariant de Toledo maximal. Pour citer cet article : M. Burger et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).  2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Group Representations with Maximal Toledo Invariant

We develop the theory of maximal representations of the fundamental group π1(Σ) of a compact connected oriented surface Σ with boundary ∂Σ, into the isometry group of a Hermitian symmetric space X or, more generally, a group of Hermitian type G. For any homomorphism ρ : π1(Σ) → G, we define the Toledo invariant T(Σ, ρ), a numerical invariant which is in general not a characteristic number, but ...

متن کامل

DEFORMATIONS OF MAXIMAL REPRESENTATIONS IN Sp(4,R)

A good way to understand an object of study is, as Richard Feynman famously remarked, to “just look at the thing!”. In this paper we apply Feynman’s method to answer the following question: given a surface group representation in Sp(4,R), under what conditions can it be deformed to a representation which factors through a proper reductive subgroup of Sp(4,R)? A surface group representation in a...

متن کامل

Higgs Bundles and Surface Group Representations in the Real Symplectic Group

In this paper we study the moduli space of representations of a surface group (i.e., the fundamental group of a closed oriented surface) in the real symplectic group Sp(2n,R). The moduli space is partitioned by an integer invariant, called the Toledo invariant. This invariant is bounded by a Milnor–Wood type inequality. Our main result is a count of the number of connected components of the mod...

متن کامل

The Action of the Mapping Class Group on Maximal Representations

Let Γg be the fundamental group of a closed oriented Riemann surface Σg, g ≥ 2, and let G be a simple Lie group of Hermitian type. The Toledo invariant defines the subset of maximal representations Repmax(Γg , G) in the representation variety Rep(Γg , G). Repmax(Γg, G) is a union of connected components with similar properties as Teichmüller space T (Σg) = Repmax(Γg , PSL(2, R)). We prove that ...

متن کامل

Graph Eigenfunctions and Quantum Unique Ergodicity

We apply the techniques of [BL10] to study joint eigenfunctions of the Laplacian and one Hecke operator on compact congruence surfaces, and joint eigenfunctions of the two partial Laplacians on compact quotients of H × H. In both cases, we show that quantum limit measures of such sequences of eigenfunctions carry positive entropy on almost every ergodic component. Together with the work of [Lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003